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Abstract. The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism,
within the framework of the instanton liquid model. For the integration path corresponding to this form
factor, the explicit expression for the vacuum expectation value of the Wilson operator is found to the
leading order. It is shown that the instantons produce the power-like corrections to the perturbative
result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse
average instanton size. It is demonstrated that the instanton contributions to the quark form factor are
exponentiated to high orders in the small instanton density parameter.

PACS. 12.38.-t Quantum chromodynamics — 11.15. Tk Other nonperturbative techniques

In the present report, we start the investigation of the
instanton-induced effects in the high-energy QCD pro-
cesses by means of the Wilson integral formalism [1,2].
The basic object of study in such an approach is the gauge
invariant vacuum average of the Wilson loop operator

W(C) = %Tr<0‘Pexp (ig/cdxpﬁﬂ(x)>‘0> G

c

where the integration goes along the closed contour C' and
the gauge field /Alu(:y) = TAf(z), T* = /\—;, belongs to
the Lie algebra of the gauge group SU(N,), while the Wil-
son loop operator Peid [ d2A@) Jieg in its fundamental rep-
resentation. We propose an approach which allows one
to evaluate the instanton contributions to the Wilson in-
tegrals made of several (in)finite lines containing specific
cusp, and/or cross singularities. For this purpose, we start
with one of the simplest configurations, i.e., the angle with
infinite sides that corresponds to the integration path for
the Wilson operator describing the soft part of the quark
Sudakov form factor [3].

For brevity, we omit here the detailed discussion on the
renormalization of cusp singularities, just say that it can
be proven that there exists the consistent renormalization
procedure for such quantities [4]. For details, see [5].

The leading nontrivial cusp-dependent term in the ex-
pansion of W (C) (1) in powers of g* for the angle with
two infinite straight-line rays contains the contributions
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from both perturbative and nonperturbative fields, which
can be expressed in the following form:

2C
—g F / deH/ dyy D;u/(x - y) s (2)
2 c, c,

NZ-1
2N,
field propagator D, (%) as

WH(y) =

where Cp = . It is convenient to present the gauge

Dy (2) = 6, 02d:1(2%) = 8,0, da(2%) . 3)

Here and in what follows, we use the dimensional regular-
ization with n =4 — 2¢, € < 0 in order to control the IR-
divergent terms in the integrals. The remaining UV singu-
larity will be regularized by the corresponding UV cutoff.

The trajectories of the incoming and outgoing quarks
may be parameterized as ¢ = v1s (0 < s < ), y =
vaT (—oo < 7 < 0) . The angle between the vectors vy
and vy is given in the Minkowski space by

2
cosh x = (viv9) = P1p2) =14+ Q
m

2 2m?’
7Q2 = (p? 7p1)2a 1}%72 =1, (4)

—

where the quark momenta are supposed to be on-shell:
p? = p3 = m?. The continuation to the Euclidean space is
defined as: x — 7y (see [6,7]). Hence we have within the
one-loop accuracy

W(y) =1 —4ra,Cr(n - 2)h(7)d1(0) , ()
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where
h(7) = yeoty — 1 (6)

is the universal cusp factor. We should emphasize here
that the expression (5) holds for the perturbative as well as
for the nonperturbative part depending on the value d; (0).

Let us consider first the perturbative part Wg° (7).
The function d; (0) diverges at both upper and lower limit
and then must be UV and IR regularized [5]. To this end,
we may introduce the UV cutoff 42 and IR cutoff A2, and
finally get the perturbative part with one-loop accuracy:

We(:0) =1 = Z-Crh(y)ln5; . (7)

The nonperturbative contribution to W(C) in the in-
stanton model can be estimated as follows. The instanton
field is given by

Au(aip) = SR™o"E (@ = 20)pla =i p) (9
where R is the color orientation matrix (a,b=1,2,3),
0%’s are the Pauli matrices, and (+) corresponds to the
instanton, or anti-instanton. The averaging of the Wilson
operator over the nonperturbative vacuum is reduced to
the integration over the coordinate of the instanton center
20, the color orientation and the instanton size p. The mea-
sure for the averaging over the instanton ensemble reads
dI = dR d*zy dn,, where dR refers to the averaging over
color orientation, and dn, depends on the choice of the
instanton size distribution. Taking into account (8), we
write the Wilson integral (1) in the single-instanton ap-
prozimation in the form

wi(C) = Ni (0[Tr exp (i096%) [0) | (9)

where the phase is

a a b
¢ = R%p*?, /C dz, (- 20)upl@ — z0ip) . (10)

For the sake of simplicity, in what follows we restrict our-
selves to the investigation of the weak-field limit. In this
limit, the leading instanton-induced term reads

/dnp / dxu/ dy,

4 (ks p) Ay (= ks p)e™ oY)

2)\n 4

) / 2m)"

By using the Fourier transform of the instanton field
Af(k;p) eq. (11) can be written in the form of eq. (3)

with the instantonic analogue of the function d;(2?):
di(2?) — di(22), where

1
_92—0F /dnpD](ZQ; Py )\)

X /dn dnk
-~ ¢%Cp p(277)"

wi®(y) =

- (11)

di (%) =

e (28 (K% p)” . (12)
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Above, @(k?; p) is the Fourier transform of the instanton
profile function ¢(22; p) and @' (k?; p) is its derivative with
respect to k2. Now using the result (5) of the previous
section, we get the instanton contribution in the form

wi(v:6,)) = (n— 2)h(y) / dn, Di(0:e, N p) . (13)

Consider now the renormalization of the nonpertur-
bative part for the instanton field in the singular gauge,
where the profile function is

2

vl "

o(u; p) =

For the complete expression for D;(0;¢, A, p), see [5]. Ap-
plying the renormalization procedure as described in the
previous section, we find in the leading order the instanton
contribution to the Wilson loop:

(0~ 1= k) [dn, pl(py) . (19

In order to estimate the magnitude of the instanton-
induced effect we consider the distribution function which
has been suggested in [8] (and discussed in [9] in the frame-
work of the constrained instanton model) in order to de-
scribe the lattice data [10]:

dp 2m
dnp =5 O (as(p)

2Ne 27 2
) e asm e 2P (16)

where the numerical constant Cp, is determined by the
number of colours Cy, ~ 0.0015 and the string tension is
accepted to be o ~ (0.44GeV)? [11,8]. Then, using the
one-loop expression for the running coupling constant we
find the instanton contribution (15) in the form (in the
distribution (16), the slow-varying logarithmic factor due
to the power of the coupling « is assumed to be constant,
and taken at the point of the mean instanton size p):

(A —1= th(y)w

2w 2N. AQCD 601 A2
) (%(ﬁ)) (\/27r0> Yomg
where [y is the first coefficient of the perturbative -
function. The expression (17) shows explicitly that the
instantons yield the power-like corrections to the pertur-
bative result, which is expected from general considera-
tion, e.g., from the renormalon analysis (see, e.g., [12]).
It is instructive to express the result (17) in terms
of the mean instanton size p and the instanton den-
sity n calculated directly from the distribution (16). To
compare the instanton-induced and perturbative parts,
we assume that the factorization scale p (which divides
the soft and hard regions of momenta in the factorized
quark form factor) is of order of the inverse instanton size
p = p~t ~0.6GeV. Then we write the total leading-order

(17)
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contribution to the Wilson loop expectation value in the
form

as(p .
Wi(v,p,A) =1+ #Cph('y)ln(pzx\Q)
5077271,04)

Cr (18)

X (1—1—[(

71,2

where Sy = # ~ 10 is the “classical enhancement”
factor with the renormalized coupling constant g(u) at
the energy scale p ~ p~!, and K ~ 0.74. The ratio of the
instanton correction to the perturbative leading term is
about 0.5, what is estimated using the conventional value
for the packing fraction [13] m2np* ~ 0.1. One can see us-
ing the main formula (17) that the strong power suppres-
sion of the instanton part is partially compensated by the
large factor SgN <T! This means that at the energy scale
of order of 5~! the magnitude of the instanton-induced ef-
fects is comparable to the leading perturbative part, and
must be taken into account as well. It is useful also to
note that the two-loop—order perturbative contribution
appears numerically to be of the same order as the instan-
ton part [5]. Thus, the complete consideration of the quark
form factor at the low-momentum scale must include both
the two-loop perturbative part and the leading-order in-
stanton one.

Expression (18) defines the first terms of the Wilson
loop expansion in gauge fields. On the basis of the expo-
nentiation theorem [14] for the non-Abelian path-ordered
exponentials it is well known that perturbative corrections
to the Sudakov form factor are exponentiated to high or-
ders in the QCD coupling constant. Let us show briefly
how the single-instanton contribution is exponentiated in
the small instanton density parameter, treating the instan-
ton vacuum as a dilute medium [15]. For details, see [5].
The gauge field is taken to be the sum of individual in-
stanton fields in the singular gauge, (8),(14), with their
centers at the points z;’s. Since the parameterization of
the loop integral along rays of the angle plays the role of
the proper time, a time-ordered series of instantons arises
and has an effect on the Wilson loop. Then, the expression
is simplified when averaging over the gauge orientations of
instantons: the entire loop integral collapses to a product
of traces,

Wi () = lim JTwf’ (). (19)

Jj=1
Since the individual instantons are considered to be de-
coupled in the dilute medium, the total multiple instanton
contribution to the vacuum average of the Wilson oper-
ator simply exponentiates the all-order single-instanton
term wy(7y), and one has
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To summarize, we have calculated, within the instan-
ton vacuum model, the nonperturbative contribution to
the soft part of the quark form factor, described in terms
of the vacuum expectation value of the Wilson loop for
the contour of a special form. We have proved that in the
dilute regime, the full instanton contribution to the quark
form factor is given by the exponentiated all-order single-
instanton result, see (20). In the weak-field limit, the in-
stanton contribution to the soft part of the color singlet
quark form factor is found explicitly in terms of the instan-
ton profile function in the singular gauge. It is shown that
the instanton-induced effects are of a power type (17), but
nevertheless they are comparable in magnitude to the per-
turbative ones at the scale of order of the inverse average
size of the instanton in the instanton vacuum, see (18).
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